Refine Your Search

Search Results

Standard

Electrical Interference by Conduction and Coupling - Capacitive and Inductive Coupling via Lines Other than Supply Lines

2017-11-08
CURRENT
J1113/12_201711
This SAE Standard establishes test methods for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test methods demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Four test methods are presented in SAE J1113-12: the capacitive coupling clamp (CCC) method the direct capacitive coupling (DCC) method the inductive coupling clamp (ICC) method the capacitive/inductive coupling (CIC) method
Standard

Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength from Electric Vehicles, 150 kHz to 30 MHz

2017-11-07
CURRENT
J551/5_201711
This SAE Recommended Practice specifies measurement procedures and performance levels for magnetic and electric field emissions and conducted power mains emissions over the frequency range 150 kHz to 30 MHz, for vehicles incorporating electric propulsion systems, e.g., battery, hybrid, or plug-in hybrid electric vehicles. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz is covered in CISPR 12.
Standard

On-Board System Requirements for LTE V2X V2V Safety Communications

2017-11-06
WIP
J3161
This new document, at a minimum a recommended practice, will use as a basis the existing SAE J2945/1 to a version that uses LTE V2X (Long Term Evolution Vehicle to X) as specified in 3GPP (3rd Generation Partnership Project) R-14 as the radio access technology and on-board vehicle-to-vehicle (V2V) safety communications system for light vehicles. This new document addresses the on-board system needs for ensuring that the exchange of BSMs (Basic Safety Messages) in V2V safety communications provides the desired interoperability and data integrity to support the performance of the envisioned safety applications. Specifically, this new document will include standards profiles, functional requirements, and performance requirements.
Standard

Test Procedure for Battery Flame Retardant Venting Systems

2017-11-02
WIP
J1495
This SAE Standard details procedures for testing lead-acid SLI (starting, lighting, and ignition), Heavy-Duty, EV (electric vehicle) and RV (recreational vehicle) batteries to determine the effectiveness of the battery venting system to retard the propagation of an externally ignited flame of battery gas into the interior of the battery where an explosive mixture can be present. NOTE: At this time 2011, there is no known comparable ISO Standard.
Standard

Test Protocol for UAS Reciprocating (Intermittent) Engines as Primary Thrust Mechanism

2017-10-30
WIP
AS6971
This standard is intended to provide a method (or methods) to obtain repeatable and consistent measurements to reflect true engine performance and durability in customer. Standardized methodology is needed to normalize engine performance to fairly rate engine operating variables and parameters. Operational protocols will be defined according to engine class and will be based on those developed for on-highway applications. Based on typical engine operation, a series of speed and load combinations and/or sequences will be determined. The scope will include dynamometer based testing and static propeller-based experiments. The industry consists of many platforms that use reciprocating engines as the main (or sole) provider of rotational energy to propeller. There also exists a significant move towards hybrid-based engine-battery systems that are expected to have different operational requirements.
Standard

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles

2017-10-30
WIP
J3016
This Recommended Practice provides a taxonomy for motor vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis and that range in level from no driving automation (level 0) to full driving automation (level 5). It provides detailed definitions for these six levels of driving automation in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways. These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on motor vehicles in a functionally consistent and coherent manner.
Standard

H-III5F Spine Box Update to Eliminate Noise

2017-10-25
WIP
J2915
This Information Report documents the problems with the 2002 regulated version of the spine box, and defines a recommended solution to resolve the problem.
Standard

Automatic Emergency Braking (AEB) System Performance Testing

2017-10-25
CURRENT
J3087_201710
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: establishes uniform vehicle level test procedures identifies target equipment, test scenarios, and measurement methods identifies and explains the performance data of interest does not exclude any particular system or sensor technology identifies the known limitations of the information contained within (assumptions and “gaps”) is intended to be a guide toward standard practice and is subject to change on pace with the technology is limited to “Vehicle Front to Rear, In lane Scenarios” for initial release This document describes the equipment, facilities, methods and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its immediate forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, headways, etc.).
Standard

Brazed Double Wall Low-Carbon Steel Tubing

2017-10-25
CURRENT
J527_201710
This SAE Standard covers brazed double wall low-carbon steel tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a suitable quality for bending, flaring, beading, forming, and brazing.
Standard

End Drive Adapters - Balancing Error Analysis

2017-10-24
WIP
AIR6967
This SAE Aerospace Information Report is to supplement content from ARP4163 pertaining to error analysis on the use of multiple drive adapter applications, on both vertical and horizontal balance machines. This new Aerospace Information Report will serve as a practical resource that offers guidance to the Machine Operator and Process Engineer.
Standard

Techniques for measuring the properties of lithium and lithium-ion battery anode active materials.

2017-10-18
WIP
J3159
This SAE RP provides a set of test methods and practices for the characterization of the properties of lithium battery anode active materials. Lithium battery anode active materials can be grouped in one of the following categories: lithium intercalation materials (including graphite, Li4Ti5O12); lithium alloying materials (including Sn, Si compounds/composites); lithium deposition materials (lithium metal). For the purposes of this document, material properties will be examined for particulate anode active materials (graphite, Li4TiO5, Sn compounds, Si compounds) and for metallic films (lithium metal). It is not within the scope of this document to establish criteria for the test results, as this is usually established between the vendor and customer It is not within the scope of this document to examine the electrochemical properties of anode materials since these are influenced by electrode design.
Standard

Hydraulic Hose

2017-10-18
CURRENT
J517_201710
This SAE Standard provides general, dimensional and performance specifications for the most common hoses used in hydraulic systems on mobile and stationary equipment. The general specifications contained in Sections 1 through 12 are applicable to all hydraulic hoses and supplement the detailed specifications for the 100R-series hoses contained in the later sections of this document (see Tables 1 and 2). This document shall be utilized as a procurement document only to the extent as agreed upon by the manufacturer and user. The maximum working pressure of a hose assembly comprising SAE J517 hose and hose connectors per SAE J516, SAE J518, SAE J1453, etc., shall not exceed the lower of the respective SAE maximum working pressure values. When using SAE J517 hose for marine applications, reference SAE J1475, SAE J1942, and SAE J1942-1. The SAE J517 100R9, 100R10, and 100R11 hoses are discontinued due to lack of demand. For DOD orders see Appendix C.
Standard

Recommended Practice for Determining Material Properties of Li-Battery Separator

2017-10-17
WIP
J2983
This SAE RP provides a set of test methods and practices for the characterization of the properties of Li-battery separator. The test methods in this RP have been grouped into one of three categories: 1. Manufacturing parameters: Minimum set of separator properties to be measured 2. Chemistry/Customer specific parameters: Properties that are dependent on the application, customer needs and/or requirements, manufacturing process etc. This RP will include the current best practice methodologies for these tests, with an understanding that the best practice methodologies are evolving as more information is learned. 3. R&D parameters: Properties that are dependent on the application, customer needs and/or requirements, manufacturing process etc. The methodologies in this 3rd section are under development and have not yet achieved broad application.
Standard

Electric Park Brake Sizing

2017-10-16
WIP
J3158
The scope of this new recommended practice should include, but not necessarily be limited to: 1. Define vehicle operating conditions used to drive MOC-EPB actuator design and selection 2. Define brake corner operating conditions (e.g. temperature and state of burnish) used to drive MOC-EPB actuator design and selection 3. Define actuator operating conditions (e.g. temperature, voltage, current limit, and state of wear) used to drive MOC-EPB actuator design and selection 4. Define methodology for addressing part to part variation in performance
Standard

Full Adaptive Forward Lighting Systems

2017-10-16
WIP
J2838
This SAE standard provides test procedures, performance requirements, design guidelines and installation guidelines for full adaptive forward lighting systems (AFS).
Standard

Brake System Rating Test Code-Commercial Vehicles

2017-10-13
WIP
J880
This code is intended for commercial vehicles over 4500 kg (10 000 lb) with brake systems having typical service pressure ranges 0 to 14.1 mPa (0 to 2050 psi) hydraulic or 0 to 830 kPa (0 to 130 psi) air and is not directly applicable to vehicles with other systems. Air over hydraulic systems are to be tested as air systems.
Standard

Rolling Circumference Index Groups for Radial Tractor Drivetires

2017-10-13
WIP
J2523
This SAE Standard is established for the following purpose: a. simplify the application of radial drive wheel tires to agricultural vehicles especially those with multiple drive axle having tires of different sizes; and b. provide a pattern to combine similar sized tires into Rolling Circumference Index groups with uniform spacing between groups.
X