Criteria

Text:
Sector:
Content:
Display:

Results

Viewing 451 to 480 of 7730
CURRENT
2016-09-16
Standard
J1654_201609
This SAE Standard covers unshielded cable intended for use at a nominal system voltage up to 600 V or 1000 V (AC rms or DC). It is intended for use in surface vehicle electrical systems.
CURRENT
2016-09-16
Standard
CPMS1_17ALFAROM
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2016-09-16
Standard
CPMS2_17ALFAROM
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-09-16
Standard
J1981_201609
The test is designed to evaluate the frontal impact resistance of wheel and tire assemblies used with passenger cars, light trucks and multi-purpose vehicles. The test is specifically related to vehicle pothole tests that are undertaken by most vehicle manufacturers. The scope has been expanded to allow the use of a striker that can be angled to preferentially impact the inboard and outboard wheel flange. For side impact of the outboard rim flange only, please refer to SAE J175. This SAE Recommended Practice provides a procedure to test a wheel or a tire and the test failure criteria. The specific test for a vehicle requires input from a pothole test on that vehicle to establish the drop height of the striker used in this test.
2016-09-16
WIP Standard
J2806
Subject document is specifically intended for service brakes and service brakes when used for parking and/or emergency brakes (only) that are commonly used for automotive-type, ground wheeled vehicles exceeding 4536 kg (10 000 US lb) Gross Vehicle Weight Rating (GVWR). Subject specification provides the off-vehicle procedures, methods, and processes used to objectively determine suitability of tactical and combat ground wheeled vehicle brake systems and selected secondary-item brake components (a.k.a. aftermarket or spare parts), including brake “block” for commercial applications only, specifically identified within subject document. Subject specification is primarily based on known industry and military test standards utilizing brake inertia dynamometers. Targeted vehicles and components include, but may not be limited to the following: a.
CURRENT
2016-09-15
Standard
CPGM1_17LT4CAMA
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2016-09-15
Standard
CPGM2_17LT4CAMA
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
2016-09-14
WIP Standard
J257
The minimum performance values in this SAE Recommended Practice are applicable to vehicles with brake systems having typical service pressure ranges 0 to 16.6 MPa (0 to 2400 psi) hydraulic or 0 to 945 kPa (0 to 135 psi) air only. SAE J880 not only provides for determining maximum brake rating power capability, but also permits verification of any desired or arbitrary level such as the requirement established herein. The determining criteria for deciding brake rating power capability are: a. Cold brake stopping ability. b. Fade as a result of brake power absorption. c. Hot brake stopping ability following brake power absorption. d. Brake system stability following brake power absorption. e. Functional and structural integrity of brake system following test.
2016-09-14
WIP Standard
J75
Motor vehicle brake fluid must conform to the requirements of SAE J1703 or J1704, not only when manufactured, but also after extended storage in any commercial packaging container. The purpose of this SAE Information Report is to generate an awareness of the major problems involved in the storage of brake fluids and, to some extent, provide means of circumventing them. It is also the purpose of this document to relate to experience and to test data accumulated and to list certain conclusions which should aid in the proper selection of containers for brake fluid.
2016-09-14
WIP Standard
J575
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device specific tests and requirements can be found in applicable SAE technical reports.
CURRENT
2016-09-13
Standard
J1707_201609
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed.
CURRENT
2016-09-09
Standard
J1926/3_201609
This part of SAE J1926 specifies dimensions, performance requirements, and test procedures for adjustable and nonadjustable light-duty (L series) stud ends with ASME B1.1 threads for use in fluid power and general applications and the O-rings used with them. Stud ends in accordance with this part of SAE J1926 may be used at working pressures up to 35 MPa for nonadjustable and adjustable stud ends. The permissible working pressure depends upon materials, design, working conditions, application, etc. For threaded ports and stud end specified in new designs for hydraulic fluid power applications, only ISO 6149 shall be used. Threaded ports and stud ends in accordance with ISO 1179, ISO 9974, and ISO 11926 shall not be used for new design in hydraulic fluid power applications. Conformance to the dimensional information does not guarantee rated performance.
CURRENT
2016-09-09
Standard
J2284/5_201609
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD Data at 5 Mbps High-Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 5 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
CURRENT
2016-09-09
Standard
J525_201609
This SAE Standard covers normalized electric-resistance welded, cold-drawn, single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
CURRENT
2016-09-09
Standard
J1926/2_201609
This part of SAE J1926 specifies dimensions, performance requirements, and test procedures for adjustable and nonadjustable heavy-duty (S series) stud ends with ASME B1.1 threads for use in fluid power and general applications and the O-rings used with them that are currently not listed in SAE J515. Stud ends in accordance with this part of SAE J1926 may be used at working pressures up to 63 MPa for nonadjustable stud ends and up to 41.3 MPa for adjustable stud ends. The permissible working pressure depends upon materials, design, working conditions, application, etc. For threaded ports and stud ends specified in new designs for hydraulic fluid power applications, only ISO 6149 shall be used. Threaded ports and stud ends in accordance with ISO 1179, ISO 9974, and ISO 11926 shall not be used for new design in hydraulic fluid power applications. Conformance to the dimensional information does not guarantee rated performance.
CURRENT
2016-09-09
Standard
J1926/1_201609
This part of SAE J1926 specifies dimensions for fluid power and general use ports with inch threads in accordance with ASME B1.1 for use with adjustable and nonadjustable stud ends shown in SAE J1926-2 and SAE J1926-3. Ports in accordance with this part of SAE J1926 may be used at working pressures up to 63 MPa for nonadjustable stud ends and up to 40 MPa for adjustable stud ends. The permissible working pressure depends upon materials, design, working conditions, application, etc. For threaded ports and stud ends specified in new designs for hydraulic fluid power applications, only ISO 6149 shall be used. Threaded ports and stud ends in accordance with ISO 1179, ISO 9974, and ISO 11926 shall not be used for new designs in hydraulic fluid power applications.
CURRENT
2016-09-09
Standard
J592_201609
This SAE Standard provides test procedures, requirements, and guidelines for sidemarker lamps for vehicles less than 2032 mm in overall width.
CURRENT
2016-09-08
Standard
CPGM1_16LTGCAMA
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2016-09-08
Standard
CPGM2_16LTGCAMA
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
2016-09-08
WIP Standard
J2742
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 11 conductors and 4 twisted pairs for use on trucks, trailers, and dollies in conjunction with SAEJ2691. (15 pole connectors.) The cable includes both power and unjacketed SAE J1939-15 paired signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
2016-09-08
WIP Standard
J573
Most signal and marking lighting devices have light sources (bulbs), which can be based on either filament or LED technology. To assure field replacement, it is important that light source types employed be readily available in normal service channels. This document defines the physical, electrical, and photometric characteristics necessary to achieve a proper replacement for popular types of signal and marking light sources. Some of the design characteristics in this document are listed solely for the sake of standardization and are not intended to describe the performance of lighting devices (lamp assemblies) on the vehicle.
2016-09-07
WIP Standard
J3005-1
SAE J3005-1 is being published as a new document which replaces J3005:20140602 ( Guidance for Remote I/M programs, Portable Emission Measurement Systems (PEMS), GPS, Wireless-LAN or Bluetooth interfaces and insurance devices.) The SAE J3005-1 devices are not intended to be used for SAE J1699-3 vehicle validation testing. The document focuses on OBD mandated communication protocols defined in SAE J1979.
CURRENT
2016-09-07
Standard
CPFD2_17FFUSION
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-09-07
Standard
CPFD2_17FESCAPE
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-09-07
Standard
CPFD2_16TRANSCO
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2016-09-07
Standard
CPFD1_17FFUSION
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2016-09-07
Standard
CPFD1_16TRANSCO
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2016-09-07
Standard
CPFD1_17FESCAPE
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
2016-09-06
WIP Standard
J2819
This Technical Information Report defines the diagnostic communication protocol TP2.0. This document should be used in conjunction with SAE J2534-2 in order to fully implement the communication protocol in an SAE J2534 interface. Some Volkswagen of America and Audi of America vehicles are equipped with ECU(s), in which a TP2.0 proprietary diagnostic communication protocol is implemented. The purpose of this document is to specify the requirements necessary to implement the communication protocol in an SAE J2534 interface.
2016-09-06
WIP Standard
J2818
This Technical Information Report defines the diagnostic communication protocol Keyword Protocol 1281 (KWP1281). This document should be used in conjunction with SAE J2534-2 in order to fully implement the communication protocol in an SAE J2534 interface. Some Volkswagen of America and Audi of America vehicles are equipped with ECUs, in which a KWP1281 proprietary diagnostic communication protocol is implemented. The purpose of this document is to specify the KWP1281 protocol in enough detail to support the requirements necessary to implement the communication protocol in an SAE J2534 interface device.
Viewing 451 to 480 of 7730