Refine Your Search

Search Results

Standard

J1349 Certified Power Engine Data for Fiat Chrysler as used in 2019 BV and 2019 FD - Level 2

2018-10-15
CURRENT
CPFC2_19BV
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

Characterization of On-Board Vehicular Hydrogen Sensors

2018-10-09
CURRENT
J3089_201810
This SAE Technical Information Report (TIR) provides test methods for evaluating hydrogen sensors when the hydrogen system integrator and/or vehicle manufacturer elect to use such devices on board their hydrogen vehicles, including hydrogen fuel cell electric vehicles (FCEV). The tests described in 5.1 of this document are performance-based and were developed to assess hydrogen sensor metrological parameters. These tests were designed to accommodate a wide range of environmental and operating conditions based on different possible situations and sensor implementations within the vehicle. Section 5.2 covers supplemental electrical safety and physical stress tests. These are based upon standard tests developed for qualifying electrical and other components for use on vehicles and do not explicitly pertain to gas sensor metrological performance assessment.
Standard

Radiator Nomenclature

2018-10-09
CURRENT
J631_201810
This SAE Recommended Practice documents nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Standard

Brake Block Effectiveness Rating

2018-10-09
WIP
J1802
This SAE Recommended Practice provides the test procedure and methods to calculate the effectiveness of brake blocks, using an inertia dynamometer. To minimize testing variability, and to optimize standardization and correlation, a single, high volume size of brake block is specified (FMSI No. 4515E) and evaluated in a reference S-cam brake assembly of 419 mm x 178 mm (16.5 in x 7.0 in) size, using a specified brake drum.
Standard

Brake Effectiveness Marking for Brake Blocks--Truck and Bus

2018-10-09
WIP
J1801
This SAE Recommended Practice provides the method to assign numerical values of brake effectiveness, using data from single station inertia dynamometer effectiveness tests, and to identify a uniform procedure to mark these values on the edge of brake blocks in excess of 12.7 mm (0.51 in) in thickness. The edge markings are intended to provide relevant and meaningful data on the normal and hot effectiveness of brake blocks, using the reference full size brake assembly, to aid in the characterization of these brake block frictional properties. This edge marking methodology is intended to permit accurate identification of the effectiveness values over the full wear life of the brake block. This is accomplished by means of permanent markings on one edge of the brake block.
Standard

Braking Performance - Asphalt Pavers

2018-10-04
CURRENT
J2118_201810
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired and tracked asphalt pavers. Service, secondary, and parking brakes are included.
Standard

Glossary of Terms Related to Fluid Filters and Filter Testing

2018-10-04
CURRENT
J1124_201810
Over the years during which fluid filtration systems have been developing, many terms have come into use for descriptions of characteristics of filter media, filter assemblies, test methods, and test materials. Inevitably, some terms have been applied loosely, so that the same term may have different meaning to different people, or in different frames of reference. Recognizing the need for clearly defined terms, which can have only one meaning for all persons in all circumstances, so that documents dealing with standard methods of evaluation of filters will have only one interpretation, the Filter Test methods Subcommittee of the SAE Engine Committee has compiled this Glossary of related terms. No attempt has been made to produce an all-inclusive document, containing definitions of all terms related to all types of fluid filters. Instead, the Glossary is confined to the terms likely to be encountered in relation to filters for lubricating oil and fuels.
Standard

Method for Assessing the Cleanliness Level of New Hydraulic Fluid

2018-10-04
CURRENT
J1277_201810
To provide a method by which to assess the cleanliness of new hydraulic fluids. The method is applicable to new mineral and synthetic hydraulic fluids - regardless of packaging. This SAE Standard is not intended as a procedure for operating equipment.
Standard

Data Link Layer

2018-10-03
CURRENT
J1939/21_201810
The SAE J1939 documents are intended for light, medium, and heavy-duty vehicles used on or off road, as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on- and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements. The purpose of these documents is to provide an open interconnect system for electronic systems. It is the intention of these documents to allow Electronic Control Units to communicate with each other by providing a standard architecture. This particular document, SAE J1939-21, describes the data link layer using the Classical Extended Frame Format (CEFF) with 29-bit IDs, as defined in ISO 11898-1, December 2015. For SAE J1939, no alternative data link layers are permitted.
Standard

R-1234yf and R744 Design Criteria and Certification for OEM Mobile Air Conditioning Evaporator and Service Replacements

2018-10-02
WIP
J2842
The intent of this standard is to establish a framework to assure that all evaporators for R-744, R-1234yf, and R-445A mobile air conditioning (MAC) systems meet appropriate testing and labeling requirements. SAE J639 requires vehicle manufacturers to perform assessments to minimize reasonable risks in production MAC systems. The evaporator (as designed and manufactured) shall be part of that risk assessment and it is the responsibility of the vehicle manufacturer to assure all relevant aspects of the evaporator are included. It is the responsibility of all vehicle or evaporator manufacturers to comply with the standards of this document at a minimum. (Substitution of specific test procedures by vehicle manufactures that correlate well to field return data is acceptable.) As appropriate, this standard can be used as a guide to support risk assessments.
Standard

Cooling Flow Measurement Techniques

2018-09-26
CURRENT
J2082_201809
This SAE Information Report has been prepared at the request of the SAE Road Vehicle Aerodynamics Forum Committee (RVAC), incorporating material from earlier revisions of the document first prepared by the Standards Committee on Cooling Flow Measurement (CFM). Although a great deal is already known about engine cooling, recent concern with fuel conservation has resulted in generally smaller air intakes whose shape and location are dictated primarily by low vehicle drag/high forward speed requirements. The new vehicle intake configurations make it more difficult to achieve adequate cooling under all conditions. They cause cooling flow velocity profiles to become distorted and underhood temperatures to be excessively high. Such problems make it necessary to achieve much better accuracy in measuring cooling flows.
Standard

Inertia Calculation for Single-Ended Inertia-Dynamometer Testing

2018-09-26
CURRENT
J2789_201809
This procedure provides methods to determine the appropriate inertia values for all passenger cars and light trucks up to 4540 kg of GVWR. For the same vehicle application and axle (front or rear), different tests sections or brake applications may use different inertia values to reflect the duty-cycle and loading conditions indicated on the specific test.
Standard

Hydrodynamic Drives Terminology

2018-09-25
WIP
J641
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. EXAMPLE: Two systems of blade angle designations are described. Consequently when a blade angle is specified, the system should be designated. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Recommended Practices (RP) for Shipping Transport and Handling of Automotive-Type Battery System - Lithium Ion

2018-09-24
WIP
J2950
This RP aids in the identification, handling, and shipping of new and used un-installed lithium ion battery systems to and from specified locations. The generic term “battery system” shall be used to identify automotive-type and sized “traction” batteries when used as intended by the vehicle and battery system original equipment manufacturers (OEMs) for ground vehicles. It is the specific intent of this RP to identify, utilize and reference existing US and International hazardous materials (dangerous goods) transportation regulations, which are the only methodologies to be used to establish transportability of new battery systems. It is also the intent of this RP to provide recommendations regarding diagnostic testing to be used by service and shipping personnel for the purpose of determining a used battery system’s transportability. In support of the service and shipping personnel, the diagnostics process seeks to use standard tools of the trade and avoid laboratory type equipment.
Standard

Taxonomy and Definitions for Terms Related to Shared Mobility and Enabling Technologies

2018-09-24
CURRENT
J3163_201809
This Recommended Practice provides a taxonomy and definitions for terms related to shared mobility and enabling technologies. Included are functional definitions for shared modes (e.g., carsharing, bikesharing, ridesourcing, etc.). Public transit services and other incumbent services—such as car rentals, shuttles, taxis, paratransit, ridesharing (carpooling/vanpooling), and pedicabs—are also included in the ecosystem of shared mobility services. This Recommended Practice also provides a taxonomy of related terms and definitions (e.g., station-based roundtrip, free-floating one-way, etc.). This Recommended Practice does not provide specifications or otherwise impose requirements on shared mobility.
X