Refine Your Search

Search Results

Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components--Immunity to AC Power Line Electric Fields

2006-05-17
HISTORICAL
J1113/26_200605
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields

2014-04-16
CURRENT
J1113/26_201404
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components-- Part 27--Immunity to Radiated Electromagnetic Fields--Mode Stir Reverberation Method

1995-02-01
HISTORICAL
J1113/27_199502
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. Reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz to 10 GHz. At a later date, pulse modulation capability will be added for testing above 1 GHz. This document provides the component design and test engineers with a test procedure and the performance requirements necessary to evaluate the immunity of electronic devices to radiated electromagnetic fields early in the design stage as well as pilot and production stages. Ensuring electromagnetic compatibility early in the development stage will minimize costly changes later in the program and will prevent excessive component level hardening during full-vehicle level testing.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2005-09-27
HISTORICAL
J1113/27_200509
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. Reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2012-06-06
HISTORICAL
J1113/27_201206
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2017-10-10
CURRENT
J1113/27_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility Measurements Procedure for Vheicle Components--Part 28--Immunity to Radiated Electromagnetic Fields--Reverberation Method (Mode Tuning)

2004-11-04
HISTORICAL
J1113/28_200411
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. Reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 400 MHz - 18GHz. Pulse modulation is used for testing above 800 MHz. This document provides the component design and test engineers with a test procedure and the performance requirements necessary to evaluate the immunity of electronic devices to radiated electromagnetic fields early in the design stage as well as pilot and production stages. Ensuring electromagnetic compatibility early in the development stage will minimize costly changes later in the program and will prevent excessive component level hardening during full-vehicle level testing.
Standard

Categories of Off-Road Self-Propelled Work Machines

1999-03-01
HISTORICAL
J1116_199903
This SAE Standard applies to machines that are in regular commercial production. Included are the following categories: Earthmoving Implements and Attachments Agricultural Tractors Forestry In spite of the appearance of the same names, such as tractors in more than one category, further development of this and related standards will demonstrate that there are differences in the fully-equipped working machine that may require distinction as to intended end-point field usage. These differences include: Names of optional implements Names of components of optional implements Definitions of specification terms as affected by installed optional implements Different mounting provisions on the machines for implements and other attachments Differences in design to achieve objectives for performance, durability, or operator or public safety
Standard

Categories of Off-Road Self-Propelled Work Machines

1986-06-01
HISTORICAL
J1116_198606
This recommended practice establishes categories of off-road self-propelled work machines. Where possible, this recommended practice shows which standards writing organization - SAE or other - will be responsible for each category for machine identification terminology, component nomenclature, definitions of specification terms, and other standards and recommended practices. This recommended practice applies to machines that are in regular commercial production. Included are the following categories: Construction, General Purpose Industrial, Agricultural, Forestry, Specialized Mining Machinery, Powered Industrial Trucks. In spite of the appearance of the same names, such as tractors and loaders in more than one category, further development of this and related recommended practices will demonstrate that there are differences in the fully-equipped working machine that may require distinction as to intended end-point field usage.
Standard

Hydraulic Valves for Motor Vehicle Brake Systems Test Procedure

2012-12-03
CURRENT
J1118_201212
The SAE Recommended Practice specifies the test procedure to assure valve assemblies which are satisfactory for vehicle usage, and it is applicable to new valve assemblies for commercial production. It covers such valves where they are employed in passenger car and light truck brake systems utilizing motor vehicle hydraulic brake fluids. This procedure and requirements (SAE J1137) was developed for brake fluids conforming to SAE J1703 and FMVSS 116 (DOT 3); however, it may be utilized for valves which use DOT 4 or DOT 5 brake fluid. These procedure specifications were developed for base brake operation and do not consider the effects of ABS (anti-lock brake systems) or traction control systems which may have a significant effect on the valve. Careful analysis of the particular type ABS and/or traction control (if included in the system) should be made and additional tests are required which are not included in this document.
Standard

Hydraulic Valves for Motor Vehicle Brake Systems Test Procedure

2002-08-07
HISTORICAL
J1118_200208
The SAE Recommended Practice specifies the test procedure to assure valve assemblies which are satisfactory for vehicle usage, and it is applicable to new valve assemblies for commercial production. It covers such valves where they are employed in passenger car and light truck brake systems utilizing motor vehicle hydraulic brake fluids. This procedure and requirements (SAE J1137) was developed for brake fluids conforming to SAE J1703 and FMVSS 116 (DOT 3); however, it may be utilized for valves which use DOT 4 or DOT 5 brake fluid. These procedure specifications were developed for base brake operation and do not consider the effects of ABS (anti-lock brake systems) or traction control systems which may have a significant effect on the valve. Careful analysis of the particular type ABS and/or traction control (if included in the system) should be made and additional tests are required which are not included in this document.
Standard

Hydraulic Valves for Motor Vehicle Brake Systems Test Procedure

1993-06-01
HISTORICAL
J1118_199306
This SAE recommended practice specifies the test procedure to assure valve assemblies which are satisfactory for vehicle usage, and it is applicable to new valve assemblies for commercial production. It covers such valves where they are employed in passenger car and light truck brake systems utilizing motor vehicle hydraulic brake fluids. this procedure and requirements (SAE J1137) was developed for brake fluids conforming to SAE J1703 and FMVSSs 116(DOT 3); however, it may be utilized for valves which use DOT 4 or DOT 5 brake fluid. These procedure specifications were developed for base brake operation and do not consider the effects of ABS (anti-lock brake systems) or traction control systems which may have a significant effect on the valve. Careful analysis of the particular type ABS and/or traction control (if included in the system) should be made and additional tests are required which are not included in this document.
Standard

Hydraulic Valves for Motor Vehicle Brake Systems Test Procedure

1977-05-01
HISTORICAL
J1118_197705
The SAE Recommended Practice specifies the test procedure to assure valve assemblies which are satisfactory for vehicle usage, and it is applicable to new valve assemblies for commercial production. It covers such valves where they are employed in passenger car and light truck brake systems utilizing motor vehicle hydraulic brake fluids. This procedure and requirements (SAE J1137) was developed for brake fluids conforming to SAE J1703 and FMVSS 116 (DOT 3); however, it may be utilized for valves which use DOT 4 or DOT 5 brake fluid. These procedure specifications were developed for base brake operation and do not consider the effects of ABS (anti-lock brake systems) or traction control systems which may have a significant effect on the valve. Careful analysis of the particular type ABS and/or traction control (if included in the system) should be made and additional tests are required which are not included in this document.
Standard

Fuel Tank Filler Cap and Cap Retainer Threaded

2012-04-30
CURRENT
J1114_201204
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
Standard

Fuel Tank Filler Cap and Cap Retainer Threaded

1977-06-01
HISTORICAL
J1114_197706
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
Standard

Fuel Tank Filler Cap and Cap Retainer Threaded

2017-05-11
WIP
J1114
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
Standard

ELECTROMAGNETIC SUSCEPTIBILITY MEASUREMENT PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1987-08-01
CURRENT
J1113_198708
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Electromagnetic Susceptibility Measurement Procedures for Vehicle Components (Except Aircraft)

1975-04-01
HISTORICAL
J1113_197504
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Electromagnetic Susceptibility Measurement Procedures for Vehicle Components (Except Aircraft)

1984-06-01
HISTORICAL
J1113_198406
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Electromagnetic Susceptibility Measurement Procedures for Vehicle Components (Except Aircraft)

1978-06-01
HISTORICAL
J1113A_197806
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
X