Refine Your Search

Search Results

Standard

A Process for Utilizing Aerospace Propulsion Health Management Systems for Maintenance Credit

2018-12-06
CURRENT
ARP5987
The process detailed within this document is generic and can be applied to commercial and military applications. It applies to the entire end-to-end health management system throughout its lifecycle, covering on-board and on-ground elements. The practical application of this standardized process is detailed in the form of a checklist. The on-board element described here are the source of the data acquisition used for off-board analysis. The on-board aspects relating to safety of flight, pilot notification, etc., are addressed by the other SAE Committees standards and documents. This document does not prescribe hardware or software assurance levels, nor does it answer the question “how much mitigation and evidence are enough”. The criticality level and mitigation method will be determined between the ‘Applicant’ and the regulator.
Standard

Insulation Sleeving, Electrical, Heat Shrinkable, General Specification For

2018-12-05
CURRENT
AMSDTL23053A
This specification establishes the requirements for various types and colors of electrical insulating sleeving that will shrink to a predetermined size upon the application of heat. This specification includes provisions for demonstrating compliance with requirements through in process inspection and statistical process control (see 4.4.3.1). Continuous operating temperature ratings range from-80° to +250°C (-112° to +482°F) (see 6.1).
Standard

Electronic Engine Control Specifications and Standards

2018-12-05
CURRENT
AIR4250C
This report lists documents that aid and govern the design, development, certification, and utilization of aerospace electronic engine control systems. The report lists the military and industry specifications and standards that are commonly used in electronic engine control system design. Also included are Airworthiness Authority documents and requirements associated with certification. However, these lists are not necessarily complete. The specifications and standards section has been divided into two parts: a master list, and a categorized list that provides a functional breakdown and cross-reference of these documents. For specifications and standards, the issue available during the latest revision to this document is listed. Details of current revisions for many documents are available in the Department of Defense Index of Specifications and Standards (DODISS). It should be noted that not all of these documents are referenced or even recognized by all certification authorities.
Standard

FMVSS 105 Inertia Brake Dynamometer Test Procedure for Vehicles Above 4540 kg GVWR

2018-12-05
CURRENT
J2684_201812
This Recommended Practice is derived from the FMVSS 105 vehicle test and applies to two-axle multipurpose passenger vehicles, trucks, and buses with a GVWR above 4540 kg (10000 pounds) equipped with hydraulic service brakes. There are two main test sequences: Development Test Sequence for generic test conditions when not all information is available or when an assessment of brake output at different inputs are required, and FMVSS Test Sequence when vehicle parameters for brake pressure as a function of brake pedal input force and vehicle-specific loading and brake distribution are available. The test sequences are derived from the Federal Motor Vehicle Safety Standard 105 (and 121 for optional sections) as single-ended inertia-dynamometer test procedures when using the appropriate brake hardware and test parameters.
Standard

Hydrodynamic Drive Test Code

2018-12-05
CURRENT
J643_201812
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
Standard

Aircraft Lightning Zone

2018-12-05
CURRENT
ARP5414B
This SAE Aerospace Recommended Practice (ARP) defines lightning strike zones and provides guidelines for locating them on particular aircraft, together with examples. The zone definitions and location guidelines described herein are applicable to Parts 23, 25, 27, and 29 aircraft. The zone location guidelines and examples are representative of in-flight lightning exposures.
Standard

POWER AVAILABLE AND INLET DISTORTION CONSIDERATIONS FOR ROTORCRAFT INLET BARRIER FILTER INSTALLATIONS

2018-12-04
WIP
AIR6980
This Aerospace Information Report (AIR) identifies considerations on power available and inlet distortion for rotorcraft with Inlet Barrier Filter (IBF) installations. This document provides a more in-depth understanding of the physics behind power available and inlet distortion characterization for rotorcraft with Inlet Barrier Filter (IBF) installations, including case studies and calculation examples. It is intended to support the methods of compliance to power available and inlet distortion requirements for rotorcraft with Inlet Barrier Filter (IBF) installations recommended in ARP6912.
X