Refine Your Search

Search Results

Standard

Zinc Alloy Ingot and Die Casting Compositions

2018-01-09
CURRENT
J468_201801
Similar Specifications: UNS Z33521, former SAE J903, ingot is similar to ASTM B 240-79, Alloy AG40A; and UNS Z33520, former SAE 903, die casting is similar to ASTM B 86-76, Alloy AG40A. UNS Z35530, former SAE 925, ingot is similar to ASTM B 240-79, Alloy AC41A; and UNS Z35531, former 925, die casting is similar to ASTM B 86-82a, Alloy AC41A.
Standard

Magnesium Wrought Alloys

2018-01-09
CURRENT
J466_201801
This SAE Standard covers the most common magnesium alloys used in wrought forms, and lists chemical composition and minimum mechanical properties for the various forms. A general indication of the usage of the various materials is also provided.
Standard

Infrared Testing

2018-01-09
CURRENT
J359_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of infrared techniques for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of infrared testing and as a guide to more extensive references.
Standard

Abrasive Wear

2018-01-09
CURRENT
J965_201801
An enormous economic loss, as well as a waste of natural resources, is incurred world-wide as a result of wear of components and tools. Any effort expended in an attempt to reduce this loss is indeed worthwhile. The purpose of this SAE Information Report is to present the current state of knowledge of abrasive wear. This report, therefore, covers wear, or the undesired removal of metal by mechanical action, caused by abrasive particles in contact with the surface. It does not concern metal-to-metal wear or wear in the presence of an abrasive free lubricant. Abrasive wear occurs when hard particles, such as rocks, sand, or fragments of certain hard metals, slide or roll under pressure across a surface. This action tends to cut grooves across the metal surface, much like a cutting tool. Abrasive wear is of considerable importance in any part moving in relation to an abrasive.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
CURRENT
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

Woodruff Keys

2018-01-09
CURRENT
J502_201801
Scope is unavailable.
Standard

Electromagnetic Testing By Eddy Current Methods

2018-01-09
CURRENT
J425_201801
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

Wrought and Cast Copper Alloys

2018-01-09
CURRENT
J461_201801
Factors influencing the uses of wrought copper and copper alloys concern electrical conductivity, thermal conductivity, machinability, formability, fatigue characteristics, strength, corrosion resistance, the ease with which alloys can be joined, and the fact that these materials are nonmagnetic. Copper and its alloy also have a wide range of rich, pleasing colors. The only other metal with such distinctive coloring is gold. These materials are all easily finished by buffing, scratch brushing, plating or chemically coloring, or clear protective coating systems. When it is desired to improve one or more of the important properties of copper, alloying often solves the problem. A wide range of alloys, therefore, has been developed and commercially employed, such as the high copper alloys, brasses, leaded brasses, tin bronzes, heat treatable alloys, copper-nickel alloys, nickel silvers, and special bronzes. nickel silvers, and special bronzes.
Standard

Elevated Temperature Properties of Cast Irons

2018-01-09
CURRENT
J125_201801
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
Standard

Automotive Gray Iron Castings

2018-01-09
CURRENT
J431_201801
This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries. Specific requirements are provided for hardness of castings. Test bar tensile strength/Brinell hardness (t/h) ratio requirements are provided to establish a consistent tensile strength-hardness relationship for each grade to facilitate prediction and control of tensile strength in castings. Provision is made for specification of special additional requirements of gray iron automotive castings where needed for particular applications and service conditions. NOTE: This document was revised in 1993 to provide grade specific t/h control. In 1999 the document was revised to make SI metric units primary.
Standard

Bolts and Screws, Steel, Corrosion Resistant, UNS S17400, Tensile Strength 140 ksi, Procurement Specification

2018-01-09
CURRENT
AS7474D
This specification covers bolts and screws made from a corrosion and heat resistant, martensitic iron base alloy of the type identified under the Unified Numbering System as UNS S17400. The following specification designations and their properties are covered: AS7474: 140 ksi minimum ultimate tensile strength at room temperature, 100 ksi stress corrosion test, 72 ksi to 7.2 ksi tension-tension fatigue AS7474-1: 140 ksi minimum ultimate tensile strength at room temperature, 100 ksi stress corrosion test, 88 ksi minimum ultimate shear strength at room temperature
Standard

General Data on Wrought Aluminum Alloys

2018-01-09
CURRENT
J454_201801
The SAE Standards for wrought aluminum alloys cover materials with a considerable range of properties and other characteristics, but do not include all of the commercially available materials. If none of the materials listed in Tables 1 through 7 provides the characteristics required by a particular application, users may find it helpful to consult with the suppliers of aluminum alloy products. See companion document, SAE J1434.
Standard

Definitions of Heat Treating Terms

2018-01-09
CURRENT
J415_201801
(These definitions were prepared by the Joint Committee on Definitions of Terms Relating to Heat Treatment appointed by the American Society for Testing and Materials, The American Society for Metals, the American Foundrymen's Association, and the SAE.) This SAE revision emphasizes the terms used in heat treating ferrous alloys, but also includes for reference some non-ferrous definitions at the end of the document. This glossary is not intended to be a specification, and it should not be interpreted as such. Since this is intended to be strictly a set of definitions, temperatures have been omitted purposely.
Standard

Chemical Compositions of SAE Wrought Stainless Steels

2018-01-09
CURRENT
J405_201801
The chemical composition of standard types of wrought stainless steels are listed in ASTM Specification A240. The UNS 20000 series designates nickel-chromium manganese, corrosion resistant types that are nonhardenable by thermal treatment. The UNS 30000 series are nickel-chromium, corrosion resistant steels, nonhardenable by thermal treatment. The UNS 40000 however, includes both a hardenable, martensitic chromium steel and nonhardenable, ferritic, chromium steel. Reference to SAE J412 is suggested for general information and usage of these types of materials. See Table 1.
Standard

Test Method for Measuring Power Consumption of Hydraulic Pumps for Trucks and Buses

2018-01-08
WIP
J1341
This document covers evaluation techniques for determining the power consumption characteristics of engine driven hydraulic pumps used on heavy-duty trucks and buses. The testing technique outlined in this SAE Recommended Practice was developed as part of an overall program for testing and evaluating fuel consumption of heavy-duty trucks and buses. The technique outlined in this document provides a description of the test to be run to determine power consumption of these engine driven components, the type of equipment and facilities which are generally required to perform these tests are discussed in SAE J745. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation.
Standard

Test Method for Measuring Power Consumption of Air Conditioning and Brake Compressors for Trucks and Buses

2018-01-08
WIP
J1340
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program for testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343. The purpose of this document is to provide a recommended test procedure for establishing the power consumption of an air brake compressor or an air conditioning compressor. It is intended that this test procedure be used to determine compressor power consumption over a range of operating conditions, including both the loaded and unloaded modes.
X