Refine Your Search

Search Results

Standard

Specification of The Transmitted Loran-C Signal

2018-10-19
WIP
SAE9980
The Loran-C Radionavigation System, managed by the U.S. Coast Guard, is the federally provided radionavigation system for civil marine use in the U.S. coastal waters. It is also designated by the Federal Aviation Administration (FAA) as a supplementary system in the National Airspace System (NAS). This system provides accurate radionavigation and timing services to users in the United States of America and Canada. Loran-C is also being used and developed by several other countries in Europe and Asia. Estimates of Loran-C system accuracy must take into consideration the transmitted signal, signal propagation, signal reception, interference or errors from outside sources such as natural and man-made electromagnetic noise, skywave contamination, geometric dilution of precision, other Loran-C signals, communication information superimposed on the navigation signal, and coordinate conversion.
Standard

FIBER OPTIC DESIGN GUIDELINES FOR AEROSPACE

2018-10-18
WIP
AIR8448
This document provides guidance on key areas of system design to achieve high performance and high reliability for mission critical aerospace systems and platforms. The fundamental element of a reliable, functional aerospace fiber optic application is the system design. It is the system designers’ task to define the methods, components, installation and processes supporting the transmission of the optical signal through the platform, while providing a physical layer with the necessary performance, reliability, and readiness for the application.
Standard

High Performance Epoxies for Aerospace Applications

2018-10-18
WIP
AS8449
The goal of this document would be to control specific configurations of epoxies approved for aerospace. Providing a structured standard for configuration control of epoxies and appropriate applications and areas of use for multiple grades and environmental performance considerations.
Standard

Environmental Degradation of Composite Materials

2018-10-18
CURRENT
ARP6287
In accordance with § 4.11 of AS36100, materials used in the construction of pallets, nets, and containers shall take into account the effects of environmental conditions, such as temperature, humidity, and UV degradation, expected in service. In accordance with (E)TSO-C90, the applicant shall consider environmental degradation due to aging, ultra-violet (UV) exposure, weathering, etc., for any materials used in the construction of pallets, nets, and containers. The purpose of this Aerospace Recommended Practice (ARP) is to provide guidelines for the basic requirements to be considered regarding environmental degradation effects when qualifying composite materials in the design to fulfill the (E)TSO-C90 Minimum Performance Standard. Material qualification is the verifying of a materials attributes and characterizations, which are typically determined through testing.
Standard

Standard Best Practices for System Safety Program Development and Execution

2018-10-18
CURRENT
GEIASTD0010A
This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision.
Standard

Relating Experimental Drive Distraction and Driving Performance Metrics to Crash Involvement - Definitions of Terms and Concepts

2018-10-18
CURRENT
J3151_201810
This Information Report provides functional definitions and discussions of key terms and concepts for relating the experimental evaluation of driver distraction to real-world crash involvement. Examples of driver distraction and driving performance metrics include those related to vehicle control, object and event detection and response (OEDR), physiological indicators, subjective assessments, or combinations thereof. Examples of real-world crash involvement metrics include the epidemiological effect size measures of risk ratio, rate ratio, and odds ratio. The terms and concepts defined in this document are not intended to contribute to methodologies for assessing the individual metrics within a domain; these are covered in other SAE documents (e.g., SAE J2944) and SAE technical reports. For any measure chosen in one domain or the other, the goal is to give general definitions of key terms and concepts that relate metrics in one domain to those in the other.
X