Criteria

Text:
Content:
Display:

Results

Viewing 151 to 180 of 43682
CURRENT
2017-02-02
Standard
ARP577E
This SAE Aerospace Recommended Practice (ARP) specifies criteria for the design, development, standardization, and comprehension testing of placards containing pictures, drawings, symbols, and/or written instructions for locating and operating aircraft emergency equipment. This ARP also provides guidance in the selection and implementation of warning placards intended to instruct occupants inside, and rescue personnel outside, the aircraft.
CURRENT
2017-02-02
Standard
J2581_201702
This SAE Information report defines the thermal transport properties important in the assessment of heat management capability of brake lining, shoe, disc and drum materials. The report discusses thermal diffusivity, specific heat capacity, thermal conductivity and thermal expansion. Measurement techniques for the appropriate ASTM standards are identified. The thermal transport properties discussed are material sample properties, not the properties of entire components such as pad assemblies.
CURRENT
2017-02-02
Standard
ARP5323A
Characteristics of vertical hard-bearing balancing machines are described which make such machines suitable for gas turbine rotor balancing.
CURRENT
2017-02-02
Standard
J379_201702
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
CURRENT
2017-02-02
Standard
J380_201702
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer. Specific gravity alone shows nothing about a materials in use performance. The specific gravity of sintered metal powder friction materials, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376. Purpose To establish a uniform procedure for determining the specific gravity of brake friction material.
CURRENT
2017-02-02
Standard
ARP6199A
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR part 25 Transport Airplane passenger seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR part 25 Appendix F, Parts IV and V. Such materials are referred to as Heat Release Special Conditions (HRSC) compliant]. Additionally, it is recommended to use HRSC compliant materials in applications where not required. Independent furniture related to seat installations is outside the scope of this document.
CURRENT
2017-02-01
Standard
AS22520/45A
SCOPE IS UNAVAILABLE
2017-02-01
WIP Standard
AMS2588A
This specification covers the equipment and process requirements for forming or straightening metal parts using Ultrasonically Activated Needle Peening.
CURRENT
2017-02-01
Standard
AMS5647K
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash welded rings, and stock for forging or flash welded rings.
2017-02-01
WIP Standard
AS6171/4A
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a. prevent inclusion of counterfeit parts in the assembly b. identify defective parts c. aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
CURRENT
2017-02-01
Standard
AS9115A
The requirements of 9100 apply with the following clarification for software. This standard supplements the 9100 standard requirements for deliverable software and contains quality management system requirements for organizations that design, develop, and/or produce deliverable software and services for the aviation, space, and defense industry. This includes, as required, support software that is used in the development and maintenance of deliverable software and services. The deliverable software may be stand-alone, embedded, mobile application, or loadable into a target computer. This deliverable software may also be part of services (e.g., cloud environment, web hosted solutions or platforms).
2017-01-31
WIP Standard
AIR6417
This Aerospace Information Report (AIR) provides information related to experience with carbon brake quality-assurance rejected takeoff tests, and considerations regarding test setup, test conditions, test frequency and cost considerations.
2017-01-31
WIP Standard
AMS4779J
This specification covers a nickel alloy in the form of wire, rod, strip, foil, and powder and a viscous mixture (paste) of the powder in a suitable binder.<p>This filler metal has been used typically for joining corrosion and heat resistant steels and alloys requiring corrosion and oxidation resistant joints with good strength at elevated temperatures, but usage is not limited to such applications. This filler metal may also be used as a corrosion and oxidation resistant hard coating.
2017-01-31
WIP Standard
J2966
This document outlines general requirements for the use of CFD methods for aerodynamic simulation of medium and heavy commercial ground vehicles weighing more than 10 000lbs. The document provides guidance for aerodynamic simulation with CFD methods to support current vehicle characterization, vehicle development, vehicle concept development and vehicle component development. The guidelines presented in the document are related to Navier-Stokes and Lattice-Boltzmann based solvers. This document is only valid for the classes of CFD methods and applications mentioned. Other classes of methods and applications may or may not be appropriate to simulate the aerodynamics of medium and heavy commercial ground vehicle weighing more than 10 000lbs.
2017-01-30
WIP Standard
GA AM17-A
To enable consistency across AM specifications the committee considers it necessary to establish definitions for common terms that will be used in applicable AM specifications.
2017-01-30
WIP Standard
AMS2355M
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of wrought aluminum alloy and wrought magnesium alloy mill products (except forging stock), and includes quality assurance and testing procedures for rolled, forged, and flash welded rings (see 8.3). Requirements are specified in inch/pound units.
2017-01-27
WIP Standard
ARP5628A
This document recommends criteria and requirements for a Final Approach Spacing System (FASS) for transport aircraft. This is an Aerospace Recommended Practice to support the development of a Final Approach Spacing System (FASS) for Approach Spacing for Instrument Approaches (ASIA) operations.
2017-01-27
WIP Standard
ARP4102/4A
This document recommends design criteria for the Flight Deck Alerting System. The FAS shall enhance safety of flight by providing early crew recognition of aircraft system or component status or malfunction as well as of crew operational error. The FAS, therefore, relates to aircraft configuration and flight phase as well as the aircraft systems. To fulfill this objective, the FAS must attract the attention of the crew, must state with clarity the nature and location of the problem, and must be highly reliable and thoroughly responsive to the operational requirements and environment. Wherever possible, it should provide guidance as to the corrective action.
2017-01-27
WIP Standard
AMS4416B
This specification covers an aluminum-lithium alloy in the form of extruded profiles.
2017-01-26
WIP Standard
AS18029B
No scope available.
Viewing 151 to 180 of 43682