Refine Your Search

Search Results

Standard

FUEL GAGING SYSTEM ACCURACIES

1973-01-01
HISTORICAL
AIR1184
It is intended to provide capacitance gaging system "specifiers" with the necessary tools to make value judgements concerning the various errors typically encountered in systems of this type. Thus, in addition to merely identifying the error-causes, descriptions are given concerning the basic factors from which these error-causes derive. This knowledge, when complemented with appraisals of the relative costs of minimizing the error-causes, will furnish the system specifier with a powerful tool with which to optimize gaging system accuracy, and thus, to obtain the "best possible" overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance gaging accuracy is quite extensive, and in some instances very complex, no attempt is made herein to present an all-inclusive and fully comprehensive evaluation of the subject. Rather, the major contributors to gaging system inaccuracy are discussed.
Standard

Capacitive Fuel Gauging System Accuracies

2016-08-12
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

A Primer of Aircraft Multiplexing

1972-01-01
CURRENT
AIR1207
Today's sophisticated aircraft are required to effectively perform a variety of missions. With the advent of micro-miniaturization in electronics and advanced digital computers, a new generation of avionics equipment and systems can be utilized to increase the capabilities of the aircraft. As the quantity and variety of equipment and functions increases, the problems of inter-connecting these equipments with wires presents a constraint on size, weight, signal conditioning, reliability, maintainability and electromagnetic control. Conventional wiring has resulted in large bundles of wires and many connectors which adds excessive weight and reduces the space available for the pilot and other vital elements. This limitation can be relieved significantly by the application of well proven multiplexing techniques.
Standard

Performance of Low Pressure Ratio Ejectors for Engine Nacelle Cooling

1999-03-01
CURRENT
AIR1191A
A general method for the preliminary design of a single, straight-sided, low subsonic ejector is presented. The method is based on the information presented in References 1, 2, 3, and 4, and utilizes analytical and empirical data for the sizing of the ejector mixing duct diameter and flow length. The low subsonic restriction applies because compressibility effects were not included in the development of the basic design equations. The equations are restricted to applications where Mach numbers within the ejector primary or secondary flow paths are equal to or less than 0.3.
Standard

Electromagnetic Compatibility (EMC) System Design Checklist

1971-10-01
CURRENT
AIR1221
This checklist is to be used by project personnel to assure that factors required for adequate system electromagnetic compatibility are considered and incorporated into a program. It provides a ready reference of EMC management and documentation requirements for a particular program from preproposal thru acquisition. When considered with individual equipments comprising the system and the electromagnetic operational environment in which the system will operate, the checklist will aid in the preparation of an EMC analysis. The analysis will facilitate the development of system-dependent EMC criteria and detailed system, subsystem, and equipment design requirements ensuring electromagnetic compatibility.
Standard

COMPARISON OF GROUND-RUNUP AND FLYOVER NOISE LEVELS

2002-12-16
CURRENT
AIR1216
Because of the special circumstances under which these tests were conducted, it is necessary to carefully define the limitations on the validity of the results. The measurements and the comparisons reported here apply only to the specific locations of the noise sources and microphones and only for the specific weather and ground-surface conditions existing at the time of the tests. It cannot be assumed that these conditions are representative of most field measurements of aircraft exterior noise.
Standard

SELECTING SLIPPER SEALS FOR HYDRAULIC-PNEUMATIC FLUID POWER APPLICATIONS

1973-06-01
HISTORICAL
AIR1244
The SLIPPER SEAL is defined and the basic types in current use are described. Guide lines for selecting the type of Slipper Seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics and interchangeability.
Standard

Standard Impulse Machine Equipment and Operation

1972-11-01
HISTORICAL
AIR1228
This SAE Aerospace Information Report (AIR) establishes the part numbers and/or description of the critical components and operational guidelines for the standard hydraulic impulse machine for testing hydraulic hose assemblies, tubing, coils, and fittings and may be used for similar fluid system components, if desired. The standard impulse machine is established for the following purposes: As referee in the event of conflicting data from two or more nonstandard impulse machines. Such a referee machine might be built by an impartial testing activity. A design guide for future machines being built by manufacturers and users, or the upgrading of present machines. A design guide for higher pressure machines or special purpose machines being designed. It is not the intention of this document to obsolete present machines.
X