Refine Your Search

Search Results

Standard

Air Brake Actuator Test Performance Requirements—Truck and Bus

2008-11-18
HISTORICAL
J2318_200811
This procedure provides test performance requirements for service, spring applied parking, and double diaphragm combination air brake actuators with respect to durability, function, and environmental performance when tested in accordance to SAE J1469.
Standard

Air Brake Actuator Test Performance Requirements - Truck and Bus

2008-01-07
HISTORICAL
J2318_200801
This procedure provides test performance requirements for service, spring applied parking, and double diaphragm combination air brake actuators with respect to durability, function, and environmental performance when tested in accordance to SAE J1469.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2002-12-11
HISTORICAL
J2578_200212
This SAE Recommended Practice identifies and defines the preferred technical guidelines relating to the safe integration of fuel cell system, fuel storage, and electrical systems into the overall Fuel Cell Vehicle. Purpose The purpose of this document is to provide introductory mechanical and electrical system safety guidelines that should be considered when designing fuel cell vehicles for use on public roads. Field of Application This document covers fuel cell vehicles designed for use on public roads.
Standard

Air Brake Actuator Test Performance Requirements

2002-01-02
HISTORICAL
J2318_200201
This procedure provides test performance requirements for service, spring applied parking and double diaphragm combination air brake actuators with respect to durability, function and environmental performance when tested in accordance to SAE J1469. It also provides uniform minimum requirements for air brake actuators used in air brake systems for trucks, truck-tractor, bus, and trailers.
Standard

Combination Pelvic/Upper Torso (Type 2) Operator Restraint Systems for Off-Road Work Machines

1997-08-01
HISTORICAL
J2292_199708
This SAE Information Report provides performance and test requirements for combination pelvic/upper torso operator restraint systems provided for off-road self-propelled work machines. This document applies to 3-point and 4-point operator restraint systems (Type 2 and Type 2A) for off-road, self-propelled work machines fitted with ROPS.
Standard

A Tilt Table Procedure for Measuring the Static Rollover Threshold for Heavy Trucks

2011-05-17
CURRENT
J2180_201105
The test procedure applies to roll coupled units such as straight trucks, tractor semitrailers, full trailers, B-trains, etc. The test is aimed at evaluating the level of lateral acceleration required to rollover a vehicle or a roll-coupled unit of a vehicle in a steady turning situation. Transient, vibratory, or dynamic rollover situations are not simulated by this test. Furthermore, the accuracy of the test decreases as the tilt angle increases, although this is a small effect at the levels of tilt angle used in testing heavy trucks. The test accuracy is accepted for vehicles that will rollover at lateral acceleration levels below 0.5 g corresponding to a tilt table angle of less than approximately 27 degrees. Even so, the results for heavy trucks with rollover thresholds greater than 0.5 g could be used for comparing their relative static roll stability.
Standard

Automotive Stability Enhancement Systems

2000-12-01
HISTORICAL
J2564_200012
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a. ABS--Antilock Braking Systems b. TCS--Traction Control Systems c. AYC--Active Yaw Control Systems The document is technical in nature and attempts to remain neutral about specific manufacturer designs, and automobile producer features.
Standard

Automotive Stability Enhancement Systems

2017-11-14
CURRENT
J2564_201711
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a ABS - Antilock Brake Systems b TCS - Traction Control Systems c ESC - Electronic Stability Control The document is technical in nature and attempts to remain neutral regarding unique features that individual system or vehicle manufacturers may provide.
Standard

Automotive Stability Enhancement Systems

2004-06-07
HISTORICAL
J2564_200406
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a ABS—Antilock Brake Systems b TCS—Traction Control Systems c ESC—Electronic Stability Control The document is technical in nature and attempts to remain neutral regarding unique features that individual system or vehicle manufacturers may provide.
Standard

Instrumentation for Impact Test - Part 1 - Electronic Instrumentation

2015-04-24
WIP
J211/1
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
Standard

Air Brake Actuator Test Performance Requirements - Truck and Bus

2016-11-10
CURRENT
J2318_201611
This procedure provides test performance requirements for service, spring applied parking, and double diaphragm combination air brake actuators with respect to durability, function, and environmental performance when tested in accordance to SAE J1469.
Standard

A Tilt Table Procedure for Measuring the Static Rollover Threshold for Heavy Trucks

1998-12-01
HISTORICAL
J2180_199812
The test procedure applies to roll coupled units such as straight trucks, tractor semitrailers, full trailers, B-trains, etc. The test is aimed at evaluating the level of lateral acceleration required to rollover a vehicle or a roll-coupled unit of a vehicle in a steady turning situation. Transient, vibratory, or dynamic rollover situations are not simulated by this test. Furthermore, the accuracy of the test decreases as the tilt angle increases, although this is a small effect at the levels of tilt angle used in testing heavy trucks. The test accuracy is accepted for vehicles that will rollover at lateral acceleration levels below 0.5 g corresponding to a tilt table angle of less than approximately 27 degrees. Even so, the results for heavy trucks with rollover thresholds greater than 0.5 g could be used for comparing their relative static roll stability.
Standard

Instrumentation for Impact Test - Part 1 - Electronic Instrumentation

2007-07-27
HISTORICAL
J211/1_200707
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
Standard

Instrumentation for Impact Test - Part 1 - Electronic Instrumentation

2014-03-31
CURRENT
J211/1_201403
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
Standard

Instrumentation for Impact Test-Part 1-Electronic Instrumentation

1995-03-01
HISTORICAL
J211/1_199503
This SAE Recommended Practice outlines a series of performance recommendations which concern the whole data channel. These recommendations are not subject to any variation and all of them should be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this document should be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration should be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
Standard

Instrumentation for Impact Test-Part 1-Electronic Instrumentation

2003-12-03
HISTORICAL
J211/1_200312
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
Standard

Recommended Practice for General Fuel Cell Vehicle Safety

2009-01-12
HISTORICAL
J2578_200901
This SAE Recommended Practice identifies and defines the preferred technical guidelines relating to the safe integration of fuel cell system, the hydrogen fuel storage and handling systems as defined and specified in SAE J2579, and electrical systems into the overall Fuel Cell Vehicle. This document relates to the overall design, construction, operation and maintenance of fuel cell vehicles.
X