Refine Your Search

Search Results

Standard

Life Test for Heavy-Duty Storage Batteries (Lead Acid Type only)

2018-01-24
CURRENT
J2185_201801
This SAE Standard applies to lead-acid 12 V heavy-duty storage batteries as described in SAE J537 and SAE J930 for uses in starting, lighting and ignition (SLI) applications on motor vehicles and/or off-road machines. These applications have some of the following characteristics: a High levels of power are required to start the vehicle’s internal combustion engine. The need to supply this power limits the maximum depth of discharge to a fraction of the total capacity of the battery.
Standard

Clutch Requirements for High-Torque Truck and Bus Engines

2018-01-18
CURRENT
J2408_201801
Although not limited to, these clutch requirements are normally used on trucks considered as Heavy Duty (Class 8). This SAE Information Report defines and discusses clutch and related component configurations which will become the subject of future SAE Recommended Practices to promote standardization of clutch installations and mounting dimensions for use with pull-type heavy-duty clutches.
Standard

ABS Exciter Ring Location Standardization

2018-01-16
WIP
J1730
This SAE Recommended Practice establishes the Antilock Brake System [ABS] sensor interface and envelope dimensions for standardizing the location of the ABS rings mounted on the inner end of spoke wheels, hubs and hub-rotor assemblies on the following axle designations. a. FF b. FL c. FC d. FH e. L f. R g. U h. W j. N k. P
Standard

Dimensional Compatibility for Commercial Vehicle Wheels to Air Disc Brake Calipers—Truck and Bus

2018-01-10
WIP
J2803
This SAE Recommended Practice defines the boundary line for establishing dimensional compatibility between air disc brake calipers and 22.5 inch diameter disc wheels and includes valve stem consideration. The line establishes the minimum wheel with valve stem envelope to allow interchangeability. This document addresses dimensional characteristics only and makes no reference to the performance, operational dynamic deflections or heat dissipation of the system. It is up to the system integrator to ensure sufficient clearance exists between the caliper, wheel and valve stem to provide safe operating conditions. Mounting systems as noted are referenced in SAE J694.
Standard

Test Method for Measuring Power Consumption of Air Conditioning and Brake Compressors for Trucks and Buses

2018-01-08
WIP
J1340
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program for testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343. The purpose of this document is to provide a recommended test procedure for establishing the power consumption of an air brake compressor or an air conditioning compressor. It is intended that this test procedure be used to determine compressor power consumption over a range of operating conditions, including both the loaded and unloaded modes.
Standard

Test Method for Measuring Power Consumption of Hydraulic Pumps for Trucks and Buses

2018-01-08
WIP
J1341
This document covers evaluation techniques for determining the power consumption characteristics of engine driven hydraulic pumps used on heavy-duty trucks and buses. The testing technique outlined in this SAE Recommended Practice was developed as part of an overall program for testing and evaluating fuel consumption of heavy-duty trucks and buses. The technique outlined in this document provides a description of the test to be run to determine power consumption of these engine driven components, the type of equipment and facilities which are generally required to perform these tests are discussed in SAE J745. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation.
Standard

Measurement of Vehicle and Suspension Parameters for Directional Control Studies - Rationale

2018-01-02
CURRENT
J1574/2_201801
This SAE Information Report presents the background and rationale for SAE J1574-1. The motor vehicle industry is working toward a more complete understanding of the factors affecting the motions of vehicles on the roadway, by using a variety of techniques that predict responses to road and operator inputs. The capability to predict responses is desirable so that vehicles can be designed for optimum safety and utility. In addition to the force and moment properties of the pneumatic tires, a number of vehicle and suspension parameters affect the response of the vehicle; these include weight, center-of-gravity location, moments of inertia, suspension ride and roll rates, suspension kinematic and compliance properties, and shock absorber characteristics. These parameters must be quantified in order to predict vehicle responses. Measurement of most of these parameters will be limited to determining their values in the linear range for use in directional control simulations.
Standard

Measurement of Vehicle and Suspension Parameters for Directional Control Studies

2018-01-02
CURRENT
J1574/1_201801
The parameters measured according to this SAE Recommended Practice will generally be used in simulating directional control performance in the linear range. (The “linear range” is the steady-state lateral acceleration below which steering wheel angle can generally be considered to be linearly related to lateral acceleration.) But they may be used for certain other simulations (such as primary ride motions), vehicle and suspension characterization and comparison, suspension development and optimization, and processing of road test data. This document is intended to apply to passenger cars, light trucks, and on-highway recreational and commercial vehicles, both non-articulated and articulated. Measurement techniques are intended to apply to these vehicles, with alterations primarily in the scale of facilities required.
Standard

Qualified Hoses for Marine Applications

2017-12-27
CURRENT
J1942/1_201712
The following list consists of hose data provided as of December 2017, and is for convenience in determining acceptability of nonmetallic flexible hose assemblies intended for usage under 46 CFR 56.60-25. Where the maximum allowable working pressure (MAWP) or type of fitting is not specified, use the manufacturer's recommended MAWP or type of fitting. This list has been compiled by SAE Staff from information provided by the manufacturers whose product listings appear in this document. Manufacturers wishing to list their products in this document shall: a. Successfully test their hose to the requirements of SAE J1942, Table 1. b. Submit a letter of certification to the SAE J1942 test requirements for each specific type of hose tested (see sample table on page 4) along with the test results. All sizes should be included in the same letter which must also include all of the information necessary to make a SAE J1942-1 listing. c.
Standard

Seven Conductor Cable for ABS Power - Truck and Bus

2017-12-20
CURRENT
J2394_201712
This SAE standard establishes the minimum construction and performance requirements for seven conductor 1/8-2/10-4/12 cable for use on trucks, trailers and converter dollies. Where appropriate, the standard refers to two types of cables, (Type F and S, described later in the standard), due to the variation in the performance demands of cables used in flexing and stationary applications. While the document’s title refers to ABS Power to differentiate the document from the SAE J1067 standard that it supersedes, the scope applies to both the primary green cable for powering ABS and lighting and the yellow auxiliary cable of the same construction.
Standard

Lighting Identification Code

2017-12-20
CURRENT
J759_201712
This SAE Recommended Practice provides the lighting function identification codes for use on all passenger vehicles, trucks, trailers, motorcycles, and emergency vehicles.
Standard

Heavy Duty Vehicle Cooling Test Code

2017-12-12
CURRENT
J1393_201712
The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of heavy duty vehicle cooling systems to meet Original Equipment Manufacturer or end user thermal specifications to ensure long term reliable vehilcle operations. The recommendations from the present document are intended for heavy-duty vehicles including, but is not limited to, on- and off-highway trucks, buses, cranes, drill rigs, construction, forestry and agricultural machines.
Standard

Air Disc Brake Actuator Test Requirements

2017-12-07
CURRENT
J2932_201712
This document provides test performance requirements for air disc brake actuators for service and combination service parking brake actuators with respect to function, durability and environmental performance when tested according to SAE J2902.
Standard

Spherical and Flanged Sleeve (Compression) Tube Fittings

2017-11-29
CURRENT
J246_201711
This SAE Standard covers complete general and dimensional specifications for tube fittings of the spherical and flanged sleeve compression types for use in the piping of air brake systems on automotive vehicles. The spherical sleeve compression type Figures 1A to 5 and Tables 1 to 3 is intended for use with annealed copper alloy tubing per SAE J1149, Type 1. The flanged sleeve compression type Figures 6A to 11 and Tables 4 to 6 is intended for use with nylon tubing per SAE J844. It is not intended to restrict or preclude other designs of a tube fitting for use with SAE J844, air brake tubing. Performance requirements for SAE J844 are covered in SAE J1131. See SAE J1131 for the Performance Requirements of Reusable (Push to Connect) Fittings Intended for Use in Automotive Air Brake Systems.
Standard

Combined Cornering and Braking Test for Truck and Bus Tires

2017-11-29
CURRENT
J2675_201711
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under combined cornering and braking conditions. The properties are acquired as functions of slip angle, normal force, and slip ratio. Slip angle and normal force are changed incrementally using a sequence specified in this document. At each increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine, and modifications to the protocols recommended within are expected depending on the requirements of each customer. Due care is necessary when modifying protocols to ensure that the integrity of the data is maintained.
Standard

Fifth Wheel and Gooseneck Attachment Performance Up to 13608/kg (30000/lb) Trailer Weight

2017-11-28
CURRENT
J2638_201711
This document establishes minimum performance criteria and definition of terms for the towing interface between a towing vehicle and fifth wheel or gooseneck trailer at or below 13608 kg (30000 pounds) gross trailer weight. This establishes criteria for the hitch, tow vehicle attachment structure, trailer attachment structure, and coupler.
Standard

Control Valve Test Procedure

2017-11-27
CURRENT
J747_201711
This SAE Standard applies to hydraulic directional control valves as applied to self-propelled work machines referenced in SAE J1116. It describes a laboratory test procedure for evaluating: a Flow versus pressure drop b Leakage rate c Operating effort d Metering characteristics versus spool travel, pilot pressure, or electrical current e Relief valve characteristics The document applies to single and multiple section hydraulic directional control valves. This document illustrates axial, manually operated valves although the test procedure is applicable to other input forms such as rotary actuation, electric current, hydraulic or pneumatic pressure. Performance characteristics such as metering hysteresis or dynamic response may have a significant effect on some of these tests.
Standard

Air Dryer Installation Procedure

2017-11-15
CURRENT
J2383_201711
This SAE Recommended Practice establishes uniform Installation Parameters for desiccant Air Dryers for vehicles with compressed air systems.
Standard

Rating of Winches

2017-11-03
CURRENT
J706_201711
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for “free-spooling” may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control “free-spooling,” but will not be relied on to control or hold a load.
X