Refine Your Search

Topic

Author

Search Results

Standard

Use Cases for Diagnostic Communication for Plug-in Electric Vehicles

2017-06-26
CURRENT
J2836/4_201706
This SAE Surface Vehicle Technical Information Report, J2836/4, establishes diagnostic use cases between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). As PEVs are deployed and include both Plug-In Hybrid Electric (PHEV) and Battery Electric (BEV) Vehicle variations, failures of the charging session between the EVSE and PEV may include diagnostics particular to the vehicle variations. This document describes the general information required for diagnostics and J2847/4 will include the detail messages to provide accurate information to the customer and/or service personnel to identify the source of the issue and assist in resolution. Existing vehicle diagnostics can also be added and included during this charging session regarding issues that have occurred or are imminent to the EVSE or PEV, to assist in resolution of these items.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

2017-06-26
CURRENT
J1342_201706
The techniques outlined in this SAE Recommended Practice were developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
Standard

J1995 Certified Power Engine Data for Yamaha as used in 2017 MX825V Lawn Mower - Level 2

2017-06-16
CURRENT
CPYM2_17MX825V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

J1995 Certified Power Engine data for Yamaha MX800V as used in 2017 Lawn Mowers - Level 2

2017-06-16
CURRENT
CPYM2_17MX800V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

Immunity to Conducted Transients on Power Leads

2017-06-13
CURRENT
J1113/11_201706
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Front Decorative Lamp

2017-06-09
CURRENT
J3098_201706
This SAE Recommended Practice applies to a decorative lamp(s) installed on the front of motor vehicles. This lamp(s) is intended only to be decorative and is not to impair the effectiveness of any required lighting device. This recommended practice establishes uniformity in use guidelines for the performance, installation, activation and switching of a front decorative lamp(s).
Standard

Brake Adjustment Limit for Air Brake Actuators

2017-06-09
CURRENT
J2899_201706
This SAE Recommended Practice applies to S-CAM, Wedge, and Disc air brake actuators where the stroke can be measured without disassembly from the brake.
Standard

Diesel Fuels

2017-06-07
CURRENT
J313_201706
Automotive and locomotive diesel fuels, in general, are derived from petroleum refinery products which are commonly referred to as middle distillates. Middle distillates represent products which have a higher boiling range than gasoline and are obtained from fractional distillation of the crude oil or from streams from other refining processes. Finished diesel fuels represent blends of middle distillates and may contain other blending components of substantially non-petroleum origin, such as biodiesel fuel blend stock, and/or middle distillates from non-traditional refining processes, such as gas-to-liquid processes. The properties of commercial distillate diesel fuels depend on the refinery practices employed and the nature of the crude oils from which they are derived. Thus, they may differ both with and within the region in which they are manufactured. Such fuels generally boil, at atmospheric pressure, over a range between 130 °C and 400 °C (approximately 270 °F to 750 °F).
Standard

Dimensional Specifications for Non-Metallic Body Push-to-Connect Fittings Used On a Vehicular Air Brake System

2017-06-07
CURRENT
J2494/2_201706
This SAE Standard covers general dimensional specifications for non-metallic body reusable push to connect tube fittings for use in the piping of air brake systems on automotive vehicles. This type of fitting is intended for use with nylon tubing per SAE J844. It is not intended to restrict or preclude other designs of a tube fitting for use with SAE J844. Performance requirements for SAE J844 are covered in SAE J1131. See SAE J2494-3 for the performance requirements of Reusable (push-to-connect) fittings intended for use in Automotive Air Brake Systems and U.S. Department of Transportation FMVSS 571.106.
Standard

Crane Load Stability Test Code

2017-06-07
CURRENT
J765_201706
This SAE Standard may be used for all revolving cranes wherein the capacity of the crane to support loads is based on its resistance to overturning. It is not applicable to cranes wherein the capacity of the crane is based on factors other than stability.
Standard

Crane Hoist Line Speed and Power Test Procedure

2017-06-07
CURRENT
J820_201706
This document applies primarily to mobile cranes that lift loads by means of a drum and hoist line mechanism. It can be used to determine the hoist line speed and power of other hoist line mechanisms, if the load can be held constant and hoist line travel distance is sufficient for the accuracy of the line speed measurements prescribed. This recommended practice applies to all mechanical, hydraulic, and electric powered hoist mechanisms.
X