Refine Your Search

Topic

Author

Search Results

Standard

Recommended Practice for Compressed Natural Gas Vehicle Fuel

2017-03-06
CURRENT
J1616_201703
Compressed Natural Gas (CNG) is a practical automotive fuel, with advantages and disadvantages when compared to gasoline. Large quantities of natural gas are available in North America. It has a higher octane number rating, produces low exhaust emissions, no evaporative emissions and can cost less on an equivalent energy basis than other fuels. Natural gas is normally compressed from 20 684 to 24 821 kPa (3000 to 3600 psig) to increase its energy density thereby reducing its on-board vehicle storage volume for a given range and payload. CNG can also be made from liquefied natural gas by elevating its pressure and vaporizing it to a gas. Once converted it is referred to LCNG.
Standard

xEV Labels to Assist First and Second Responders, and Others

2017-03-02
CURRENT
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

Event Data Recorder - Output Data Definition

2017-02-24
HISTORICAL
J1698/1_201702
This Recommended Practice provides common data output formats and definitions for a variety of data elements that may be useful for analyzing vehicle crash and crash-like events that meet specified trigger criteria. The document is intended to govern data element definitions, to provide a minimum data element set, and to specify EDR record format as applicable for light-duty motor vehicle Original Equipment applications.
Standard

Collision Deformation Classification

2017-02-23
CURRENT
J224_201702
The purpose and scope of this SAE Recommended Practice is to provide a basis for classification of the extent of vehicle deformation caused by vehicle accidents on the highway. It is necessary to classify collision contact deformation (as opposed to induced deformation) so that the accident deformation may be segregated into rather narrow limits. Studies of collision deformation can then be performed on one or many data banks with assurance that the data under study are of essentially the same type.1 The seven-character code is also an expression useful to persons engaged in automobile safety, to describe appropriately a field-damaged vehicle with conciseness in their oral and written communications. Although this classification system was established primarily for use by professional teams investigating accidents in depth, other groups may also find it useful. The classification system consists of seven characters, three numeric, and four alphameric, arranged in a specific order.
Standard

Truck Deformation Classification

2017-02-23
CURRENT
J1301_201702
The scope and purpose of this SAE Recommended Practice is to provide a classification system for deformation sustained by trucks involved in collisions on the highway. Application of the document is limited to medium trucks, heavy trucks, and articulated combinations.1 The TDC classifies collision contact deformation, as opposed to induced deformation, so that the deformation is segregated into rather narrow limits or categories. Studies of collision deformation can then be performed on one or many data banks with assurance that data under study are of essentially the same type.2 Many of the features of the SAE J224 MAR80 have been retained in this document, although the characters within specific columns vary. Each document must therefore be applied to the appropriate vehicle type. It is also important to note that the Truck Deformation Classification (TDC) does not identify specific vehicle configurations and body types.
Standard

Ambulance Modular Body Evaluation-Quasi-Static Loading for Type I and Type III Modular Ambulance Bodies

2017-02-22
CURRENT
J3057_201702
This SAE Recommended Practice describes the test procedures for conducting quasi-static modular body strength tests for ambulance applications. Its purpose is to establish recommended test practices which standardize the procedure for Type I and Type III bodies, provide ambulance builders and end-users with testing procedures and, where appropriate, provide acceptance criteria that, to a great extent, ensures the ambulance structure meets the same performance criteria across the industry. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Standard

Lumbar Flexion Test Procedure for the Hybrid III 50th Male Dummy

2017-02-21
CURRENT
J3074_201702
This procedure establishes a recommended practice for performing a Lumbar Flexion test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar.
Standard

Standard for Refrigerant Risk Analysis for Mobile Air Conditioning Systems

2017-02-21
CURRENT
J2773_201702
This Standard describes methods to understand the risks associated with vehicle mobile air conditioning [MAC] systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation and end of life. Information for input to the risk assessment is provided in the Appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
Standard

E/E Diagnostic Test Modes

2017-02-16
CURRENT
J1979_201702
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers.
Standard

J1979-DA, Digital Annex of E/E Diagnostic Test Modes

2017-02-16
CURRENT
J1979DA_201702
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
Standard

Performance Characterization of Electrified Powertrain Motor-drive Subsystem

2017-02-15
HISTORICAL
J2907_201702
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

J1349 Certified Power Engine data for GM LHN as used in 2018 Buick Lacrosse - Level 2

2017-02-14
CURRENT
CPGM2_18LHNLACR
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

Recommended Guidelines for Fatigue Testing of Elastomeric Materials and Components

2017-02-13
CURRENT
J1183_201702
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
Standard

Off-Road Tire Replacement Guidelines

2017-02-13
CURRENT
J2611_201702
This SAE information report covers the basic guidelines concerning off-road tire conditions that warrant replacement, removal, or repair. This material can assist the tire user in establishing specific written procedures for each job site.
Standard

Air Brake Actuator Test Procedure, Truck-Tractor, Bus, and Trailers

2017-02-09
CURRENT
J1469_201702
This SAE Recommended Practice provides procedures and methods for testing service, spring applied parking, and combination brake actuators with respect to durability, function, and environmental performance. A minimum of six test units designated A, B, C, D, E, and F are to be used to perform all tests per 1.1 and 1.2.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Torque-Tension Tightening for Inch Series Fasteners

2017-02-09
CURRENT
J1701_201702
This SAE Information Report is provided as an advisory guide. Individual application discretion is recommended. The content has been presented as accurately as possible, but responsibility for its application lies with the user. The document covers the variables in the torque-tension relationship: friction, materials, temperature, humidity, fastener and mating part finishes, surfaces, and the kind of wrenching employed. Also, described in this document is the torque management required to achieve correct fastener joint tightening. The thread fit of fasteners must be in accordance with Class 2A for external and Class 2B for internal inch threads.
X